16 research outputs found

    Instantaneous Clockless Data Recovery and Demultiplexing

    Get PDF
    An alternative architecture for instantaneous data recovery for burst-mode communication is introduced. The architecture can perform 1:n demultiplexing without additional clock recovery phase-locked loop or sampling blocks. A finite-state machine (FSM) is formed with combinational logic and analog LC transmission line delay cells in a feedback loop. The FSM responds to input data transitions instantaneously and sets the outputs. The system reduces unit interval jitter by a factor of n. The new architecture is demonstrated via a SiGe 1:2 clockless demultiplexer circuit that operates at 7.5 Gb/s

    Estimating data-dependent jitter of a general LTI system from step response

    Get PDF
    We present a method for estimating data dependent jitter (DDJ) introduced by a general LTI system, based on the system's step response. A perturbation technique is used to generalize the analytical expression for DDJ. Different scales of DDJ are defined that characterize the probability distribution of jitter. In particular, we identify a dominant prior bit that signifies the well-known distribution of DDJ, the two impulse functions. We also highlight that system bandwidth is not a complete measure for predicting DDJ. We verify our generalized analytical expression of DDJ experimentally and show that estimation errors are less than 7.5%

    Data-dependent jitter and crosstalk-induced bounded uncorrelated jitter in copper interconnects

    Get PDF
    This paper resolves the jitter impairment of non-return-to-zero data in transmission lines. The limited bandwidth of the transmission line introduces data-dependent jitter. Crosstalk between neighbouring lines results in bounded uncorrelated jitter in the data eye. An analytical approach to representing data-dependent jitter and crosstalk-induced bounded uncorrelated jitter is presented. Comparison with jitter measurements of microstrip lines on FR4 board demonstrated accuracy to within 15% of the predictions for deterministic jitter

    A 10-Gb/s two-dimensional eye-opening monitor in 0.13-μm standard CMOS

    Get PDF
    An eye-opening monitor (EOM) architecture that can capture a two-dimensional (2-D) map of the eye diagram of a high-speed data signal has been developed. Two single-quadrant phase rotators and one digital-to-analog converter (DAC) are used to generate rectangular masks with variable sizes and aspect ratios. Each mask is overlapped with the received eye diagram and the number of signal transitions inside the mask is recorded as error. The combination of rectangular masks with the same error creates error contours that overall provide a 2-D map of the eye. The authors have implemented a prototype circuit in 0.13-μm standard CMOS technology that operates up to 12.5 Gb/s at 1.2-V supply. The EOM maps the input eye to a 2-D error diagram with up to 68-dB mask error dynamic range. The left and right halves of the eyes are monitored separately to capture horizontally asymmetric eyes. The chip consumes 330 mW and operates reliably with supply voltages as low as 1 V at 10 Gb/s. The authors also present a detailed analysis that verifies if the measurements are in good agreement with the expected results

    A 10Gb/s eye-opening monitor in 0.13μm CMOS

    Get PDF
    An eye-opening monitor circuit in 0.13 μm CMOS operates from 1 to 12.5Gbit/s at 1.2V supply. It maps the input eye to a 2D error diagram with 68dB mask error dynamic range. Left and right halt of the eye are monitored separately to capture asymmetric eyes. Tested input amplitude is from 50 to 400mV. The chip consumes 330mW and works at 10Gb/s with a supply voltage as low as 1V

    Statistical analysis of integrated passive delay lines

    Get PDF
    Statistical properties of integrated passive LC delay lines are investigated. A new variation using spiral inductors and vertical parallel plate (VPP) capacitors is introduced whose delay is primarily determined by the lateral dimensions, resulting in very accurate and repeatable delays. An MIM-based version of this line is also fabricated for comparison. Additionally, LC delay-based oscillators are implemented to compare the variations in active and passive delay elements. Experimental data is obtained from measurement of 27 and 47 sites on two wafers from two different process runs, respectively. The measurements show 0.6% delay variations for VPP-based delay line compared to 1.0% for its MIM-based counterpart

    Bandwidth Enhancement for Transimpedance Amplifiers

    Get PDF
    A technique for bandwidth enhancement of a given amplifier is presented. Adding several interstage passive matching networks enables the control of transfer function and frequency response behavior. Parasitic capacitances of cascaded gain stages are isolated from each other and absorbed into passive networks. A simplified design procedure, using well-known low-pass filter component values, is introduced. To demonstrate the feasibility of the method, a CMOS transimpedance amplifier (TIA) is implemented in a 0.18-μm BiCMOS technology. It achieves 3 dB bandwidth of 9.2 GHz in the presence of a 0.5-pF photodiode capacitance. This corresponds to a bandwidth enhancement ratio of 2.4 over the amplifier without the additional passive networks. The trans-resistance gain is 54 dB[ohm], while drawing 55 mA from a 2.5-V supply. The input sensitivity of the TIA is -18 dBm for a bit error rate of 10^-12

    Signal Integrity Issues in High-Speed Wireline Links: Analysis and Integrated System Solutions

    Get PDF
    This work focuses on the basic signal integrity issues of high-speed wireline links. It bridges the gap between optimum system design and circuit design for such links by: (1) understanding the effects of the system parameters on the bit error rate (BER), (2) introducing circuit architectures for the realization of systems that minimize the BER, and (3) demonstrating integrated circuit prototypes that verify the solutions. First, we develop a theory that analytically relates the data link BER to the system characteristics, e.g., the channel response, the pre-amplifier bandwidth, and the transmitter clock jitter. We generate the BER contours to find the optimum receiver bandwidth as well as the optimum sampling point and its associated timing margin. We also develop the theory of the data-dependent jitter (DDJ), which is a significant component of the timing jitter in high-speed links. We provide an analytical distribution function for the DDJ of an arbitrary linear time-invariant system and include the impact of the DDJ on the BER. Second, we propose a bandwidth enhancement method for wideband amplifiers. This is useful for the realization of high-speed links in technologies that suffer from large parasitic components. The method leverages two-port broadband matching to enable amplifier stages to achieve their maximum gain-bandwidth product. We demonstrate a 10Gb/s CMOS 0.18um amplifier with this technique that has 2.4 times the bandwidth improvement over a design that does not apply the technique. Third, we develop an eye-opening monitor (EOM) that enables full integration of adaptive equalizers. The EOM evaluates the signal eye diagram quality and reports a quantitative measure, which is correlated to the signal integrity. We demonstrate a prototype in 0.13um standard CMOS that operates up to 12.5Gb/s and has 68dB error dynamic range. Finally, we introduce an instantaneous clockless demultiplexer for burst-mode communication applications. We propose a clockless finite state machine that recovers and demultiplexes the received burst of data instantaneously. The architecture consists of a combinational logic structure and a bit-period-delayed feedback loop. We demonstrate a 1:2 clockless demultiplexer based on this concept in SiGe BiCMOS technology that operates at 7.5Gb/s.</p
    corecore